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Intensional Paradoxes

GRAHAM PRIEST*

Abstract The topic of this paper is that class of paradoxes of self-reference
whose members involve intensional notions such as knowing that, saying
that, etc. The paper discusses a number of solutions that have been proposed
by, e.g., Prior and several Al workers, and argues that they are inadequate.
It argues, instead, for a dialetheic/paraconsistent resolution. A formal the-
ory of propositions is given; this is based on arithmetic, and treats proposi-
tions as sentences. In the theory the paradoxes are accommodated in a
satisfactory manner. An Appendix establishes that the contradictions in the
theory do not spread to the underlying arithmetic machinery.

Introduction The paradoxes of self-reference are known and loved (or hated)
by logicians. Attempts to solve them have provided the cornerstone of logic this
century. The set-theoretic paradoxes were integral to the development of mod-
ern set theory; the semantic paradoxes to formal semantics. There is, however,
a third clearly distinguishable group (though all three of these groups tend to
merge into the others at the edges): the intensional paradoxes. Paradoxes in this
group are just as venerable as paradoxes in the others (indeed, much more vener-
able than the set-theoretic paradoxes), since they are to be found in Buridan, if
not in antiquity, in intensional versions of the liar paradox. Yet they have had
little attention compared with their more illustrious cousins. Even after the bril-
liant papers of Prior [28] and Montague [13] on the subject, little heed was paid
to them. The situation is now changing, however, due to the need to develop a
formal theory of intensionality. The pressure for this comes largely from a, per-
haps, somewhat unexpected direction: artificial intelligence. Workers in this area
have confronted the problem of how an Al reasoning system should reason about
what it and others know, believe, etc., and have run head-on into the problem
of the intensional paradoxes (see Asher and Kamp [3], Morgenstern [15], des
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Rivieres and Levesque [30], Perlis [16], and for a general view, Thomason [37]).
The point of this paper is to review briefly the intensional paradoxes, the attempts
to resolve them, particularly by Al workers, and to suggest a better approach.

1 Semantic paradoxes The solution I advocate will be no surprise to any-
one familiar with recent debates concerning the logical paradoxes. I have argued
elsewhere! that it is necessary to accept paradoxical sentences such as the liar as
true contradictions, and hence to use a paraconsistent logic. I will not repeat this
argument here. To someone who has taken this solution to heart, the solution
to the intensional paradoxes will be a trivial corollary, since the structural sim-
ilarity between all the paradoxes of self-reference cries out for a uniform ap-
proach. Indeed, this paper is a really quite trivial extension of well-known work.
What makes it worth writing, I take it, is simply that it is well past time that
someone said it, particularly for the benefit of AI workers.

In order to discuss the intensional paradoxes and their paraconsistent reso-
lution, it will be useful to have a prolegomenon on the semantic paradoxes, and,
in particular, on a semantically closed theory. Take a first-order language which
has names for its own sentences and sufficient self-referential machinery. The
details of this are not crucial; but for the sake of definiteness, let us take the lan-
guage of first-order arithmetic. For the sake of simplicity, take this in a form
where for each n-place recursive function (or just primitive recursive function),
there is a corresponding term of the language with n free variables.?> We will also
suppose a standard Godelization, a map from formulas to numbers. If ¢ is a for-
mula, I will use {¢) as a (metalinguistic) expression for the numeral of its Godel
number. In addition, suppose that the language has a one-place predicate, T,
which is going to function as the truth predicate of the language. The logic un-
derlying the language is to be a paraconsistent logic in which standard quanti-
fier inferences, modus ponens, and the substitutivity of equivalents (but not
absorption®) hold. We will also assume that the logic contains the law of ex-
cluded middle (though this assumption is unnecessary for the production of some
semantic paradoxes: see Priest [19] and Priest [22], Section 1.3). For the sake of
definiteness, let us say that we are using a quantificational extension of the rel-
evant logic Eg4s or some higher degree extension thereof, such as DK.*

The logic is also to contain identity. Since the properties of this will be cru-
cial sometimes in what follows, it is necessary to be precise about them. The stan-
dard principles, Identity and Leibniz’ Law:

vx(x =Xx)

h=tte(t) e e(tr)

(where ¢, and ¢, are any terms, and the usual qualifications concerning substi-
tution are made) are both acceptable. However, the classical consequence of
Leibniz’ Law, ¢(#;) A "e(f,) F ¢, # t,, is not correct (as standard rele-
vant/paraconsistent semantics show: see [22], Section 5.3, and [31], Section 7).
To see why, let a be any object that has paradoxical properties, i.e., such that
for some predicate, P, both Pa and — Pa are true. Then if this form were cor-
rect, it would follow that a # a, which it does not: there may be objects which
are non-self-identical (as well as self-identical), but this is quite a different matter,
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and should by no means follow merely from the fact that an object has some in-
consistent properties.

In addition to the logical axioms we will take simply all equations and inequa-
tions true in the standard model of arithmetic and, also, the T-schema:

T{p) oo

where ¢ is any sentence (closed formula).

I will call the theory just outlined the extensional theory. This is inconsistent.
For we can prove the diagonal lemma: if «(v) is any formula of one free vari-
able, v, there is a sentence ¥ such that Fy < a((¥)).° Taking the formula ~Tv
for «(v), we get a formula ¥ such that ¢ & =T(¢). But T(¢¥) « ¢, by the
T-schema. Whence by transitivity T(y) « - T(y), and by this and the law of ex-
cluded middle (LEM), Ty} A = T{y). Thus the liar paradox is provable in the
theory. However, this does no harm since contradictions do not spread. I will
formulate this claim more precisely in Section 6.

2 Propositions Let us now return to the subject of the intensional
paradoxes. What characterizes these is that they all make use of the notion of
a proposition. This may be done in one or both of two ways: first, they may
quantify over propositions; second, propositions may be the argument of prop-
ositional functions, such as ‘is identical to’, ‘John believes/knows/fears/says
that’, ‘It is provable that’, and so on. The paradoxes do not depend, by and large,
on any specific properties of propositions, and so of any substantive theory
thereof. However, I wish to give a formal treatment on the paradoxes, and thus
the question of how to treat propositions must be faced. I have no very strong
philosophical views on the matter; moreover, the substantive points I shall make
would apply equally well if one were to take propositions and propositional
quantification as primitive. But for the sake of definiteness I shall take propo-
sitions to be sentences. We may thus simply add to the extensional language of
Section 1, monadic predicates such as B (It is believed that), K (It is known that),
etc. Then to the axioms of the extensional theory may be added the logical prin-
ciples specific to each predicate. What, exactly, these are we need not go into.
It will suffice to note that most writers subscribe to some subset of the “S5” prin-
ciples for K:

Ki HFK{p)—o

Kii FK{p - ¥) > (K{p) = K{(¥))
Kili FK{o) AK(Y) = K{o AY)
Kiv  If ke then FK{¢p)

Kv  FK(~¢)— K{p)

Kvi  FK{p) > K(K{p}

Kvii FoK{p) > K(-K{p)

where ¢ and y are sentences. The same is true when we substitute ‘B’ uniformly
for ‘K”. (Of course, depending on the underlying logic, these principles may not
be independent of each other.) I note for future reference that all of the above
are provable in the extensional theory if the intensional operator is replaced by
T. (I leave the proof of this as an exercise.) Other intensional notions, such as
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fears that, may have no very interesting purely logical postulates, though of
course for any concrete situation we may formulate nonlogical axioms. I shall
call any augmentation of the extensional theory of the kind indicated, an inten-
sional theory.

Taking propositions to be sentences is worth a few comments before we con-
tinue. First, it would obviously be incorrect to do this if we had a language with
indexicals; but the intensional language above has none. Secondly, and ironically,
the intensional paradoxes themselves have been held to refute the very possibil-
ity of taking intensional operators as syntactic predicates (see Thomason [34]).
The present paper will therefore scotch this objection once and for all. Third,
to obtain the effects of propositional quantifiers on this approach, it is necessary
to use the truth predicate. Thus, for example, instead of writing Vvp(p v —p),
we must write Vx(Fx - (Tx v = Tx)) or vx(Fx — (Tx v TNegx)) where F is a
predicate true of (codes of) sentences and Neg is the primitive recursive function
which maps a (code of a) formula to (that of) its negation. In virtue of the T--
schema, these are equivalent. Finally, treating propositions as sentences has very
clear computational advantages: processing claims and arguments about knowl-
edge etc. can be done very simply and efficiently. In virtue of the applications
of this subject in Al, this is a notable plus.

3 The paradoxes At last, then, here are the paradoxes, together with for-
mal analyses. The list is certainly not a comprehensive one. In particular, I have
not included those paradoxes which involve quantification over propositional
functions.® It should be clear, however, how they can be handled in principle.
The first two paradoxes are plain contradictions, and can simply be left to stand.

(i) The simplest paradox is Tarski’s’: there is some proposition identical to
this one which is false. Clearly, this is false iff it is true. To formalize it, we apply
the diagonal lemma to get a sentence ¥ such that:

(1) Y e 3ax(x = (yY)ATNegx).

Suppose ¢

then Ix(x = (yY) A TNegx by (1)
a = (y) A TNega existential instantiation
TNeg(y) by identity rules
T<(~¢) since Neg(y) = (¢)
ml by the T-schema.

The argument also runs in the other direction since {(¢') = (y).

(ii) A slightly more sophisticated paradox is the knower paradox of Kaplan
and Montague (see [9] and Montague [13]). It concerns the sentence: I know this
is false. Suppose this is true. Then it is known to be false, and hence false. Hence
it is false. Moreover we have just proved this. Hence it is known to be false, i.e.,
it is true. To formalize this, apply the diagonal lemma to get a sentences, ¢, such
that:
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(2) ¥ o KNeg(y)

Suppose ¢
then KNeg(y) by (2)
Hence K{(Y)

ml by Ki
Hence -y by the LEM, since { ¢} F ¢
But then K{(—y) by Kiv
i.e. ¥ by (2).

One way out of this paradox is to deny Kiv, the principle of logical omniscience,
which is obviously false for real knowers. However, this will not do (see Ander-
son [2]). First, because although the rule is not in general correct, it is if we have
explicitly recognized the proof of ¥, which we have in this case; secondly, be-
cause if we take K to mean ‘is provable’, Kiv (and K1) is intuitively correct. We
still, therefore, have an intensional paradox.®

(iii) A more sophisticated paradox yet is Prior’s.® Suppose that during a cer-
tain time a Cretan says that everything said by a Cretan during that time is false.
Suppose this is true; then everything said by a Cretan (during that time) is false,
whence it is false. Thus it is false. Hence, something said by a Cretan (during
that time) is true. Since it cannot be the thing uttered, some Cretan must have
said something else. To formalize this, let the monadic predicate D be ‘During
a particular time, t, a Cretan said that’; let the sentence:

vx(Dx — TNegx) be .

Then suppose that:

(3) D<)
and that:
¥
then  D{y) - TNegl{y) by instantiation
hence TNeg(y) by modus ponens (*)
-y by the T-schema
Hence -y by the LEM, since { ¢} F ¢
i.e. —vx(Dx — TNegx)
SO ax(Dx A "' TNegx) (**)
Da A = TNega by instantiation
But TNeg(y) by the T-schema
thus a #(¥) by identity principles (k%)

So 3x(Dx A x # {Y)).

Prior’s argument is not a paradox in the sense that it ends in a contradiction. The
conclusion is, on its own, quite consistent. The paradox lies, rather, in the a pri-
ori deduction of something that is quite contingent, and which we can easily ar-
range to be false. Prior’s solution to the paradox is that if nothing else is said
during this time then (3) must be false, by reductio. Implausible as this may seem,
it has at least this going for it: we may be sure that a Cretan uttered words dur-
ing that time; however, that he stated a proposition with the use of those words
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is not so obvious. Quite independently, since Prior, several writers have urged
that whether or not an utterance has content may depend on quite contingent fea-
tures not necessarily visible to the utterer (though for no reason that Prior could
appeal to here).!?

The real bite of Prior’s paradox comes, as Prior observed, when we note that
the argument makes no substantial assumptions about D at all. Hence exactly
the same conclusion must be drawn if we read D as ‘It is feared/thought etc. at
a certain time that’. It is one thing to suppose that one did not say something
though one thought one did; it is quite another to suppose that one does not fear
something when one thinks one does. Indeed, suppose we run the argument with
the intensional predicate ‘It is thought that it is feared that etc.’. Then Prior’s
conclusion is to the effect that one cannot even think that one fears something.
What in Heaven’s name is one doing then? Even worse (as Dummett noted; see
[28], p. 29) we can run the argument with D as ‘John uttered a sentence which
normally means that’ to prove that John didn’t even do that. This, surely, is to-
tally absurd (and shows, incidentally, that there are some things that are much
more absurd than some contradictions).

The solution is as follows. The argument above is invalid at line (**): the in-
ference from - (a — B) to (ax A =) is invalid. This, however, hardly gets to the
bottom of the matter. We can repair this step if we replace the — everywhere with
a material conditional. Now, however, step (*) becomes an invalid detachment
for material implication. But if this step is not truth-preserving, it must be be-
cause the antecedent is both true and false (see [22], Chapter 8, and Priest [24]).
Hence we must have D{y) A "D{y¥). This at least saves D{y ), but at the ex-
pense of endorsing its negation too, and it is not clear that this solution is much
better than Prior’s.

In any case, both this solution and the last hinge on the fact that the only
obvious ways of translating the Aristotelian A form into quantifier plus connec-
tive fails to preserve its standard properties in relevant logic. Maybe this is in-
evitable; but maybe what is required (as many have noted) is a new theory of
bounded quantification, suitable for relevant logic; but preserving (more) stan-
dard syllogistic forms. And if this is obtainable then maybe both (*) and (*%)
can be made valid. There are therefore at least two good reasons for supposing
that we have not yet got to the heart of the problem. The heart, as will proba-
bly have been clear straight away, is the inference (*#%*). As I noted in Section 1,
this inference is quite invalid. In particular, it breaks down if the object in ques-
tion has contradictory properties: in this case {y') (=a) is both true and not true.
But this is exactly what one would expect from standard dialetheic approaches
to the logical paradoxes. The assertion made by the Cretan, or whoever, is simply
a paradoxical one in the context. Isn’t that obvious?

(iv) A variant of Prior’s paradox, which Prior attributes to Buridan, is as
follows. I say that exactly one of this pronouncement and your next one is true.
You then say that apartheid is an evil, which is true. Then my saying is true iff
it is false. To formalize this let D be the predicate ‘is your next saying’, v be
exclusive disjunction; and suppose you say something true:

@) 3Ix(DxaATx).
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Instantiating the quantifier we get:

Da A Ta.
Now, by the diagonal lemma there is a ¥ such that:
(3) Vo (TavTKY)).

Suppose ¢

Then TW) by the T-schema
Then = (Ta v T(Y) by standard properties of v
Hence ml by (5)
Hence -y by the LEM
But then —T(Y) by the T-schema and contraposition
So Ta v TY) by properties of v
i.e. ¥ by (5).

Prior’s solution to this is simply to take it as a reductio of (4). The counterin-
tuitiveness of this hardly needs to be stressed. It shows that you cannot say any-
thing true, even if the words you utter are as benign as you like. Even worse, as
in the previous paradox, we have made no substantive assumptions about D.
Hence by reinterpreting D, Prior’s solution would show that you cannot even
think something true, etc. It is much more simple and natural to take the para-
dox to show, what it appears to, that ¢ is both true and false. (Notice also that
the argument cannot then be run as a reductio of the assumption (4), since the
assumption does not on its own entail the contradiction.)

4 Other solutions In the last section I discussed Prior’s solutions to para-
doxes iii and iv and argued that they are most implausible. If this were not
enough, Prior’s solution will not work anyway, just because it can be applied
only to some of the paradoxes: those which have contingent premises. It gets no
grip at all on paradoxes i and ii. I will now review other suggested solutions. They
all fail, and for at least the same reason: they can be applied at best to only some
of the intensional paradoxes.

(a) An extreme suggestion is to ban all propositional quantification. No
doubt this would appeal to certain Quineans. However, it will not work: it makes
nonsense of straightforward claims (such as that there is something I know that
you don’t), claims that are an integral part of much cognitive and Al reasoning.
And apart from anything else, paradox ii, the knower paradox, makes no use
of such quantification.

(b) Another reaction is to reject the interpretation of propositions as sen-
tences and, more generally, any account of propositions according to which they
are representational, i.e., are internally structured entities (see, €.g., [34]). Such
an internal structure is exploited in proving the diagonal lemma, the argument
for which therefore fails. Those who accept this solution face the difficult task
of giving a nonrepresentational theory of propositions which is adequate to its
task, and which does not reintroduce the paradoxes. This is no easy matter, for
many such accounts do not avoid the paradoxes, or rather avoid them only be-
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cause they cannot express perfectly legitimate notions. For example, the addi-
tion of a predicate expressing the perfectly legitimate relation sentence x expresses
proposition y is sufficient to regenerate the paradoxes in many such theories (see
[3]). But even if such a balancing trick can be performed, the solution still will
not work, since it does not avoid those paradoxes which do not use diagonali-
zation. Prior’s paradox iii is such a paradox.

(c) Another possible solution is provided by an idea of Rivieres and Levesque
[30],!! which is as follows. Suppose we take some demonstratively consistent
theory and find a deduction-preserving map, +, from the language of the the-
ory into the intensional language, which, moreover, respects negation (i.e., such
that {¢} F ¢ iff {oT} Fy¥ T, and (ne)t = —(¢™)). If we now take as axioms
only those formulas that are images of the axioms of the consistent theory un-
der the map, we can be sure that these are consistent. To apply this strategy
Rivieres and Levesque produce a suitable map from the language of a standard
(consistent) epistemic logic. Certain instances of the principles Ki-Kvii are fil-
tered out by this procedure, notably those where the formula of which K is predi-
cated is the formula given by the diagonal lemma.

As a solution to the paradoxes, this obviously leaves a good deal to be de-
sired. It establishes that there are consistent subtheories of our (classically) in-
consistent theory; but this was never in doubt. Perhaps it establishes that there
are reasonably strong subtheories; but unless it provides a rationale as to why
translatability from the source language is a criterion of truth, and, more cru-
cially, why failure to translate is a criterion of falsity, the construction is of lit-
tle theoretical value. One is reminded of some older attempts to solve the
semantic paradoxes (of a kind which have now disappeared, fortunately): any
consistent theory in a language containing a predicate written as the upper case
15th letter of the alphabet was thought to be good enough. If no rationale is
forthcoming, this kind of approach is at best an exercise in formal virtuosity.
Moreover, in this and similar cases of “strategic withdrawing to a safe domain”
(Lakatos [12], pp. 28ff), since there is no rationale, there is no guarantee that
the axioms have not been decimated unduly: that there is not perfectly legitimate
reasoning which is ruled out. For example, consider the sentence ‘This sentence
is known to be a well-formed formula’ (or its arithmetic analogue, formed by
diagonalizing on the predicate ‘is the (code of) a well-formed formula’). This is
quite unproblematically true. Yet its construction requires the diagonal lemma,
and so the obvious argument for its truth is blocked on this approach. (I leave
the verification of this as an exercise.)

Finally, though this approach ensures consistency, it does not guarantee the
absence of other paradoxes and absurdities. Thus, Prior’s paradoxes iii and iv
do not use any instance of a modal axiom! Their proofs therefore go through
in Rivieres and Levesque’s approach. As Kant might (not) have put it: concep-
tions without intuitions are blind.

(d) A fourth possibility for resolving the paradoxes starts from the obser-
vation that the principle of bivalence, in the form of the law of excluded mid-
dle, is employed in the paradoxes. Hence, jettisoning this may provide a solution.
It is worth noting that moving to intuitionistic logic will not solve the paradoxes.
This is because the intuitionistically valid (« - —«a) = —«a (consequentia
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mirabilis) would do instead of the law of excluded middle in a number of the
cases. But suppose we think more classically and grant there to be truth-value
gaps which invalidate both the law of excluded middle and consequentia
mirabilis? 1t should be noted that this suggestion is quite unsatisfactory unless
we have an independent argument that the paradoxical sentences are truth-
valueless. But even if we had such an argument, the suggestion will still not solve
the paradoxes. For, as in the alethic case, there are paradoxes which explicitly
take the possibility of truth-value gaps into account, “extended paradoxes”. (For
similar comments, see [2].)

For example, consider the “extended knower paradox”: This sentence is
known to be false or truth-valueless. Suppose it is true. Then since what is known
is true, it must be false or truth-valueless. Hence it is not true. It must therefore
be false or truth-valueless; and we have just proved that. Hence we know it to
be false or truth-valueless, i.e., it is true.

Similarly, there is an extended version of Prior’s paradox iii. Suppose a Cre-
tan says that everything a Cretan says is either false or truth-valueless. Suppose
also that nothing else is said by the Cretan. If the pronouncement is true, then
it is either false or truth-valueless. Contradiction. But if it is either false or truth-
valueless, it is true. Contradiction. Hence if a Cretan says this, something else
must be said by a Cretan.

Supposing there to be truth-value gaps does not, therefore, solve either the
semantic or the intensional paradoxes.

5 Borrowing alethic technology Another thought as to how to solve the
paradoxes is this. The notion of truth, and in particular, the T-schema, is prom-
inent in a number of the paradoxes. There are, of course, many suggested so-
lutions to the semantic paradoxes which reject this. Maybe if we employ one of
these solutions, the intensional paradoxes can also be avoided. The thought will
not work. For a start, the techniques concerning truth are all known to be un-
satisfactory in their own right (see, e.g., Priest [20], Priest [23], Priest [25] and
especially [22], Chapter 1); hence no generally satisfactory solution can be ex-
pected in this way. Secondly, the notion of truth was necessary in formulating
the paradoxes only because I chose to represent propositions as sentences and
eschewed propositional quantification in its own right. Had we used this, the no-
tion of truth would not even have appeared in the paradoxes. Third, and con-
clusively, not all the paradoxes made use of the notion of truth. The knower
paradox, iii, for example, does not.

In reply to the last point, one might suggest that although truth itself does
not appear in the knower paradox, it might be possible to apply some of the de-
vices familiar from accounts of truth aimed at solving the semantic paradoxes
to notions which do occur in the knower (and similar) paradoxes, and thus solve
them. This suggestion has, indeed, been made by various people, so it is worth
commenting on. Since the techniques used are all known to be problematic in
the alethic case it would be amazing if they worked any better for the intensional
case; and, indeed, they do not, being susceptible to exactly the same problems.
I will indicate this briefly. Those who do not want to tread these well-trodden
paths again can skip on to the next section.
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(a) The first technique that has been used is the Tarski hierarchy of metalan-
guages. It supposes that natural language is really a hierarchy of languages; each
language has its own family of intensional predicates, gramatically applicable
only to the sentences of the language below. Thus, self-reference is made impos-
sible. 12

The move has little independent rationale: there is no linguistic evidence that
language has this structure. Thus the strategy is merely that of “withdrawal to
a safe domain” again, and, as usual, such strategies withdraw too far. There is
perfectly good self-referential reasoning concerning intensional notions, which
cannot be handled this way. We have already met the sentence ‘This sentence is
known to be well formed’ which is unproblematically true, but cannot be for-
mulated, let alone have its properties established, on this view. Neither are the
sentences involved necessarily of this artificial kind. The skeptic’s claim, that he
knows nothing, is self-refuting just because it applies to itself. Grice’s famous
definition of meaningy n. involves intentions concerning, inter alia, the effects
of those intentions. Many of us have beliefs that all our beliefs (including this
one) are fallible. And so it goes on. The banning of intensional self-reference just
cannot do justice to our rich and self-reflexive mental life. To put the cap on it,
there isn’t even any syntactic way of determining which sentences involve self-
reference, since whether self-reference occurs may depend on quite contingent
facts, such as the reference of certain noun phrases (as Kripke has pointed out
in [11]). Solutions that work on syntactic regimentation are therefore hopelessly
misguided.

Many of these objections are avoided by a slightly liberalized version of the
hierarchy solution suggested by Anderson [2] and Burge [6]. According to them,
the extension of the knowledge predicate of English, though normally fixed, may
change (is “indexical”), particularly during certain forms of ratiocination. The
extension of the predicate may contain sentences containing the knowledge predi-
cate itself, and a certain amount of self-referential reasoning is therefore pos-
sible. Lo and behold, however, at just the point where a contradiction threatens,
the extension surreptitiously switches to avoid it. The claim that the predicate
is indexical is still ad hoc, however, in that it lacks any independent linguistic
grounding. Anderson offers an argument, based on Godel’s Theorem; but in the
end what it amounts to is: if it were not like this, inconsistency would arise; which
is hardly an independent justification of why it is like this. Moreover, a second
locus of adhocness enters the picture: for even given that the predicate may
change its extension we need an independent reason as to why it changes “in
time” to prevent inconsistency.!?

In any case, all versions of the hierarchy view succumb to extended
paradoxes, or at least, to avoid them we must maintain the inexpressibility of
some perfectly legitimate notion. For call a sentence known-in-some-sense if it
is in the union of all possible extensions of the K predicate. And consider the
claim: this sentence is known-in-some-sense to be false. The familiar reasoning
leads to contradiction.

(b) Another posited solution appeals to Kripke’s work on truth, rather than
Tarski’s. This is pursued by Morgenstern [15]. The idea here is essentially as fol-
lows. Truth is defined a la Kripke. In particular, then, certain sentences are un-
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grounded and hence neither true nor false. Let Bx be the predicate ‘x is believed’
(or ‘x is believed with justification’). Then Kx is defined as Bx A Tx. A simple ex-
ercise now shows that all of Ki-vii break down in general (with the possible ex-
ception of Kiv, depending on how one interprets it). A major problem with this
approach is that it gets truth-values wrong, even on its own terms. Suppose that
¢ is some proposition (sentence) that we know to have no truth value at some
fixed point. We therefore know that it is not true. It is therefore true that we do
not know it, i.e. 7 K{¢) is true. But by construction T{¢) has no truth value (at
the fixed point), as therefore does B{¢) A T{p), as, therefore, does its negation
“K{p).

Another substantial objection to this suggestion is that it, again, maintains
consistency only by certain perfectly legitimate notions failing to be expressible
in the language. Crucially, for example, there is no predicate which defines the
set of sentences that are neither true nor false. If there were, paradoxes of the
extended variety, such as the extended knower paradox, would occur, as may be
checked.

Similar comments apply to a solution proposed by Perlis [16]. He defines K
in the same way, except that he takes the truth predicate to be a total predicate,
applying truly to grounded true sentences and falsely to all others. His logic is,
consequently, classical. This account, similarly, gets its truth values wrong. Let
¢ be any formula that is known to be true but not grounded (e.g., T<(yY) v
—T{y) where ¢ is not grounded). Then T{¢) is false; whence K{¢) is false, con-
trary to the facts. Moreover, the approach, being classical, is subject to Tarski’s
theorem. There is no predicate which defines the set of genuinely true sentences.
If there were, we could construct extended knower paradoxes in the familiar way.

(c) The final approach that borrows standard alethic technology borrows not
from Tarski or Kripke but from Gupta and Herzberger. This is pursued by Asher
and Kamp [3]. Like Kripke, Gupta and Herzberger use a single language with
a truth predicate; like Kripke, they also define a transfinite sequence of models
such that the extension of the truth predicate (at a successor ordinal) is the set
of truths in the previous model. Unlike Kripke, however, they use classical logic.
As a result of this, there is no fixed point to the construction, but it does obtain
a certain stability, with many formulas (but not paradoxical ones like the liar and
its ilk) reaching a point where they have a fixed truth value in all subsequent
models. Asher and Kamp run a similar construction based on a frame for an
epistemic logic (for which we may suppose the accessibility relation to be at least
reflexive). A formula is in the extension of the knowledge predicate at any world
at any (successor) ordinal if it is true at all epistemic alternatives of that world
at the previous stage. (A limiting construction, whose exact details need not con-
cern us, is used at limit ordinals.) The results concerning stability are similar to
but more complex than those in the alethic case, the nature of the frame being
of crucial importance. And although Kii-v are guaranteed to be validated by this
construction, Ki, on which the knower paradox depends, is not. (Kvi-vii depend,
of course, on other frame properties even in the standard case.)

This suggestion fares no better than the others, and, arguably, fares worse.
For a start, since there are no fixed points, how this construction is supposed to
relate to English and the assertions we make in that language is quite opaque.
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Secondly, as do all possible-worlds constructions, these semantics suffer from
the problem of logical omniscience.!# Thirdly, and again, it avoids paradoxes
only by being expressively incomplete. Call a sentence, ¢, absolutely known if
K{p) is true at all worlds at all levels. Absolute knowledge is a world-invariant,
level-invariant notion. Hence it should be specifiable in a world-invariant,
level-invariant way. But there is no formula of one free variable, o (v) which de-
fines the set of absolutely known formulas in all levels of all worlds. For sup-
pose a(v) defined the absolutely known formulas at every level at every world.
By the diagonal lemma we could construct a formula  such that ¢ & —a({(¥))
holds (at all worlds and levels). Suppose that o ({¢')) is true at level A at world
w. Then ¢ is absolutely known. Hence K(y) is true at w at level A + 1, and ¢
is true at every world accessible to w at level A. In particular, ¢ is true at w at
level A (since the accessibility relation is reflexive). Whence, by definition of ¢,
o ({¥)) is false at w at level A. Contradiction. Alternatively, suppose that a ({y))
is false at w at level N. Then ¢ is not absolutely known. There is therefore some
world w’ and some (successor) level N such that K{y) is false at w" at level N.
Thus there is some alternative to w’, w”, such that  is false as w” at level N —
1. Hence, by definition, « ((¥')) is true at this level at w”, and we know that this
leads to contradiction.

Thus, all these appropriations of alethic technology fail. Crucially, all the
constructions are expressively impoverished. Indeed, this is exactly how consis-
tency is maintained. This is exactly what happens in the alethic case too.!* All
such solutions move to a language which is expressively weaker than English, and
hence fail to show that our ordinary notions, expressed in ordinary English, are,
appearances notwithstanding, consistent. Indeed, they are not, as any honest per-
son must confess.

6 The confinement of inconsistency We have now reviewed a number of
mooted solutions to the intensional paradoxes. It is clear that they are implau-
sible, frequently contrived, or just plain wrong. By contrast, the paraconsis-
tent/dialetheic solution is simple and natural. The paradoxical sentences in
question are, as the paradoxical arguments show, both true and false; and pro-
vided a paraconsistent logic is used, we may at least suppose (until proved oth-
erwise) that the contradictions do not spread, and therefore do no harm.'

This raises the question of how far the contradictions do spread. A proof of
nontriviality is always a welcome result; a result circumscribing the realm of con-
tradiction is even more so. In this final section I will provide just such a result
for certain intensional theories. The result is a corollary of the following theo-
rem concerning the extensional theory.

Theorem 1 For the extensional theory of Section 1, if a is any sentence not
containing T then o is not provably inconsistent.

In particular, therefore, contradictions do not spread into the underlying the-
ory of arithmetic. I indicate the proof of this theorem in an appendix. To state
the corollary, a definition is useful. Let us say that an intensional theory is regular
if every axiom (or rule of inference) involving intensional operators would be a
theorem (or an admissible rule) of the extensional theory if all the intensional
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operators were replaced by T. In fact, most normal intensional theories are reg-
ular. Standard theories for knowledge and belief are regular, as I observed in Sec-
tion 2. Many intensional operators do not even have proper logical axioms.
Regular intensional theories are therefore most theories of logical interest. The
corollary is:

Corollary In any regular intensional theory, if « is any sentence not contain-
ing an intensional predicate or T, it is not provably inconsistent.

Proof: The proof of this is trivial: if a theory is regular it can be interpreted in
the extensional theory simply by mapping intensional predicates to T.

As I stated at the beginning of the paper, the correct solution to the inten-
sional paradoxes is (quite literally) but a corollary of the correct solution to the
semantic paradoxes.

NOTES

1. See Priest [18], [20], and particularly [22], Part One. In an Al context, I have ar-
gued the thesis in [25], where the present approach to the intensional paradoxes was
mooted. The present paper can be profitably read as a sequel to that one.

2. This can be done in a finitary way with resources slightly exceeding those of first-
order logic, by having function symbols for each basic recursive function, and func-
tional symbols for substitution, primitive recursion (and minimization). See Boolos
[4], Chapter 7.

3. a—= (a— B) Fa— S: see Note 8.
4. For Egys see, e.g., [1], Section 19. For DK see [31], Section 6.

5. Proof: Let 6(v) represent the diagonal function. Consider « (6(v)). Call this
¢(v). Its diagonalization is ¢({¢)). Since 6 represents the diagonal function,

Fo(p)) = (e e))). Hence Fa(8(e))) « ap(ed)), i.e. Fop)) « ap(el))).
Thus, ¢({)) is the required formula.

6. For example, the propositional version of the heterological paradox. For a discus-
sion of some others see Thomason [36]. The Surprise Exam paradox might also be
thought of as a paradox of intensionality (see [9]). In its simple form, where the
teacher’s pronouncement is not self-referential, it seems to me that the most plau-
sible solution is just to deny that the children know that the teacher is speaking the
truth —however earnestly s/he speaks (thus refuting the definition of knowledge as
justified true belief). In its more complex form, where the teacher’s pronouncement
is self-referential, the situation is more like that in the knower paradox, and a di-
aletheic solution may be more plausible.

7. Tarski [33], pp. 160 ff. I have reformulated it slightly.

8. There is a version of the knower pardox for belief, which does not use Bi. Slightly
different versions are given by Thomason [35] and Burge [5]; but essentially it goes
as follows. By diagonalization we can find a formula ¢ such that:

(*) @« " B{p)
B¢ > " By{e» by Biv
So B{p) = B{(-B{¢» by Bii
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But B{B{p)) — " B{(B{p)) by Bv
So B{p) > " B(B{p»

But B{¢) > B{B{¢) by Bvi
Thus —B{p) by contraposition and the LEM
Whence ¢ by (*)
and B{p) by Biv.

Interpreting B as belief, this argument has little to recommend it since it depends
on the manifestly false Bv. If we interpret B as ‘It is rational to believe that’, then
all the steps are much more plausible. If they are correct then we have a true con-
tradiction. I would argue that Bv is incorrect even for rational belief, however. It
is possible to believe a sentence and its negation rationally. See Priest [21] or [22],
Chapter 7.

There is also a Curried form of the knower paradox: Given an arbitrary 3, by
diagonalization we find a sentence of the form:

(*) ¢ o (K{p)—B)

Thus  K{¢) - (K{¢)—B) by Ki
Gx)  (K(p)—f) by absorption
Hence ¢ by (*)
So K{p) by Kiv
Whence 8 by (*x*).

This argument fails if absorption fails, as it must if ordinary Curry paradoxes are
to be avoided.

. For this and the next paradox see [28]. See also Prior [29], Chapter 6.

. This observation and a number of others in the following discussion of Prior’s
paradoxes come from the (still, unfortunately) unpublished [36], which paper first
alerted me to the subject of intensional paradoxes. See also the excellent discussion
in [6].

. To be fair to them, it is not clear that they think of themselves as trying to solve the
paradoxes. Perhaps they are just showing that there are reasonably strong consis-
tent sentential theories.

. Clearly, on this approach naming cannot be performed by Gédel numbering; some
other device is used. The approach is mooted by Kaplan and Montague [9], and car-
ried out in Priest [17]. It is also implemented by Konolige [10], though it is not clear
that this is in response to the paradoxes.

. Burge has a sophisticated but somewhat tortuous argument aimed at justifying this
for his version of the believer paradox (see Note 8). However, whether he takes this
to apply to the knower paradox, and if so, how, is unclear to me.

. To be fair to Asher and Kamp, they recognize this problem and say that they would
avoid it by applying the technique in a different way, but what this is is not ex-
plained.

. See [22], Chapter 1. Clearly, in the extensional theory, and, a fortiori, in intensional
theories, both truth and falsity are expressible. It might be thought, however, that
these theories, too, suffer from expressive incompleteness. For a discussion and re-
jection of this view see Priest [26].

. Naturally, it is possible to formulate objections to this approach to the paradoxes,
too, though this is not the place to discuss them. For full details see [22].

. For the logic RM3 see Brady [7], Section 2, or Anderson and Belnap (1], p. 470.
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Appendix In this appendix I will sketch a proof of Theorem 1 of Section 6.
The proof relies heavily on a construction of Brady [7], and I will not repeat a
number of proofs to be found in that paper. The theorem is itself a corollary of
a more general theorem. To explain what that is, it will help to have a couple of
definitions. If « is any formula let > be o with all occurrences of — replaced
by D. If X is a theory (i.e., set of sentences), let X° = {a~;a € X}. The the-
orem is as follows:

Theorem 0 Let X be a theory in a language not containing T. Let ¢ be a sen-
tence in the same language such that X> ¥ ¢> (where the & is classical
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consequence). Then ¢ is not a theorem of the theory (in the extended language)
X + T-schema.

Proof of Theorem 1: Suppose that « is an arithmetic sentence, and that A is the
set of arithmetic axioms of the extensional theory. Then clearly 4> i (a A
—1t)" since A- is true in the standard model. By Theorem 0, a A - is not a
theorem of the extensional theory.

Proof of Theorem 0: The first step is to construct a theory X * in the language
of X plus a denumerable number of individual constants, which contains X, is
maximally consistent, saturated in the constants, but such that ¢ cannot be de-
duced from X . Since X° ¥ ¢, X > may be extended to a consistent saturated
theory, Y, such that Y lf ¢~ by the usual Henkin construction. Now let X+ =
{a;a € Y}. X7 can easily be checked to have the right properties.

Let us call the language of X *L. Let L7 be the language L extended by a
new monadic predicate T. We assume that to each formula, ¢, of L is assigned
a term in L, {¢), to function as its name. This is always possible since there are
countably many constants. (In particular, if L contains the language of arithme-
tic—as it does in the case we are interested in —(¢) is just the numeral of its
Godel number under some standard Godelization.)

An initial sentence is any sentence of LT which is either atomic or is of the
form o — (3. I will call any map which assigns to each initial sentence one of the
values ¢, b, and f, and then uses RM3 truth conditions and substitutional quan-
tification to extend this to all formulas of L7, an evaluation.'” At one point be-
low, RM3 implication will also make an appearance. I will write this as =.

Define an ordering on evaluations, <, as follows:

v < p’ iff for every initial sentence, «o:
if v(a) =t or f then v(a) = »'(a) (*)
Lemma 1 If v < v’ then condition (*) holds for all sentences of LT.
Proof: See Brady [7], Lemma 1. The proof is straightforward.
The argument now employs two iterative constructions.

Construction One. Given any evaluation, », define a (transfinite) sequence of
evaluations thus:

Vo = V.
For A #0:

(T(p)) = tif 3xVu(k = p < N implies »,(¢) = t)
S if 3k¥Yp(k < p < N implies v, (v) = f)
b otherwise

ma)  =yo(a)
where « is any other initial sentence.

(Note that Brady’s definition is slightly different, but equivalent.)
Lemma 2 Ifk<utheny,<vw,.

Proof: The proof is straightforward.
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Now consider the sequence {v,; A an ordinal}. By Lemma 2 and some sim-
ple facts about cardinality, it follows that there must be a \ such that, for all
k > N, vy = »,. Let \ be the least such ordinal; and let »* = »,.

Observe the following about »*:

i) v*(a) = v (T{a)).

G » <™.
Construction One produces an evaluation which would validate the T-schema
if it were formulated with = but not as formulated with —. To rectify this we em-
ploy Construction Two.

Construction Two. Given an evaluation », define a (transfinite) sequence of eval-
uations as follows:

Vo = V.
For N #0:

na—RB) =tif‘v’u<)\v:(a=>6) =t
fifdp<Npi(a=B)=f
b otherwise
where « and § are formulas of L7
my) = ¢ if IkVp(k < p < N\ implies v;(y) = 1)
Sfif 3akVp(x < p < N implies v, (v) = f)
b otherwise
where v is any other initial sentence.

(Again, Brady’s definition is slightly different but equivalent.)
Lemma 3 If k <, then v, <w,.
Proof: See Brady [7], Lemma 2.

Now consider the sequence {»,; A an ordinal}. By Lemma 3 and some sim-
ple facts about cardinality, it follows that there must be a N\ such that, for all
k > N, vy = »,. Let \ be the least such ordinal; and let »7 = »,.

Observe the following facts about »7:

d v<oT
(i) »I(TKa) o a) =t.

Now define an evaluation on initial sentences thus:

v(e)=tifae X*
v(o) =fif rae Xt
v(a) = b otherwise.

This is well defined since X T is consistent. Moreover, it is easy to check that if
o is any sentence of L, if « € Xt then »(«) = ¢, and if o & X * then v(a) = f.
By the above observations, »7 verifies all members of X+ (and hence X), the
T-schema, but not ¢. If »7 is a model of the logic, we are home.

Whether or not this is so depends, of course, on the exact logic we are using,
a matter I left partly indeterminate in Section 1. There are, however, many logics
of the kind I indicated there for which this is true:
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Lemma 4 vT is a model of many logics of the kind indicated in Section 1.
Proof: The proof is tedious but straightforward. See Brady [7], Theorem 1.

A final comment: The proof actually proves something stronger than the
stated theorem. Since the RM3 truth conditions for A, v, and — are essentially
those of the strong Kleene three-valued logic, and Construction One is essentially
the construction of a Kripke fixed-point, any grounded formula (in Kripke’s
sense) receives a classical truth value at »7. Hence if « is grounded « A = is not
provable in the extensional theory. This gives correspondingly stronger forms of
Theorem 1 and its Corollary.



